.

Monday, July 27, 2015

What is LTE?

 Wireless World

Long-Term Evolution, commonly marketed as 4G LTE, is a standard for wireless communication of high-speed data for mobile phones and data terminals. It is based on the GSM/EDGE and UMTS/HSPA network technologies, increasing the capacity and speed using a different radio interface together with core network improvements.

This technology is the most efficient mobile broadband technology for providing an excellent user experience. It offers the highest data rates and shortest latency times.
  Over 600 operators in more than 180 countries are investing in LTE networks.  As it stands, most of the time when your phone displays the “4G” symbol in the upper right corner, it doesn’t really mean it. When the ITU-R set the minimum speeds for 4G, they were a bit unreachable, despite the amount of money tech manufacturers put into achieving them. In response, the regulating body decided that LTE, the name given to the technology used in pursuit of those standards, could be labeled as 4G if it provided a substantial improvement over the 3G technology.

Immediately networks began advertising their connections as 4G LTE, a marketing technique that allowed them to claim next-gen connectivity without having to reach the actual required number first; it would be like the U.S. claiming they had landed on the moon because they got pretty close and the spaceship that got them there was a lot better than the previous ship. It’s not entirely trickery though, despite inconsistent speeds depending on location and network, the difference between 3G and 4G is immediately noticeable.
So the real question is, can you feel a difference between 4G and LTE networks? Is the speed of loading a page or downloading an app on your handheld a lot faster if you have LTE technology built in? Probably not. While the difference between slower 3G networks and new 4G or LTE networks is certainly noticeably faster, most of the 4G and “true 4G” networks have upload and download speeds that are almost identical. For now, LTE is the fastest connection available for wireless networks.
     Creating 4G connectivity requires two components: a network that can support the necessary speeds, and a device that is able to connect to that network and download information at high enough speed. Just because a phone has 4G LTE connectivity inside doesn’t mean you can get the speeds you want, in the same way that buying a car that can drive 200 MPH doesn’t mean you can go that fast on a 55 MPH freeway.
Before carriers were able to truly offer LTE speeds in major areas, they were selling phones that had the capabilities they would need to reach the desired speeds, and afterwards started rolling out the service on a limited scale. Now that LTE service is fairly widespread, this isn’t as much of a problem, but if you don’t live in a major metropolitan area it’s worth checking to make sure you actually need LTE service where you live and work. With the rise in popularity, it’s uncommon for a provider to charge less if you aren’t utilizing the LTE speeds on a regular basis, but you can save money by picking up an older generation smartphone with only 3G or 4G connectivity.
         No matter what the data is or how fast it’s being transferred, it needs to be packaged and sent so that other points on the network can interpret it. Older networks use circuit-switching technology, a term that refers to the method of communicating. In a circuit-switching system, a connection is established directly to the target through the network, and the entirety of the connection, whether it’s a phone call or a file transfer, happens through that connection.

A lot of the technology used to create 4G speeds doesn’t have anything to do with voice communication. Because voice networks still use circuit-switching technology, it became necessary to reconcile the difference between older and newer network structures. A few different methods have been enacted that deal with the issue, and most carriers chose to deploy one of two options that preserved their control over the minutes used.They do this by either allowing the phone to fall back to circuit-switching standards when used to make or receive a call, or by using packet-switching communication for data and circuit-switching for voice at the same time. The third option is to simply run the voice audio as data over the new LTE networks, a method that most companies have avoided, most likely because it takes away their power to easily charge for voice minutes. Voice over LTE is basically what happens already when you make a Skype call or a Face time Audio connection to another user, with higher-resolution audio and faster connection speeds.
benefits
  • Delivers extremely fast broadband for people and things (LTE-M)
  • Operates on a global standard on licensed and unlicensed spectrum (LTE-U)
  • Offers efficient delivery and smooth implementation
  Wireless World

1.Bluetooth

  2.Wi-Fi (Wireless Fidelity)

   3.Infrared

    4.Wi-max, WLANS, WPANS, WMANS, WWMANS

        5.GSM

          6.3g

           7.4g

            8.GPRS

              9.CDMA

                 10.EVDO

                   11.UMTS and HSDPA

                     12. LTE (Long-Term Evolution)